
 1

Twin3 Motor Driver

PCBMotor/EJ 7/9/2017

In the following the theory and commands for PCBMotor’s 5/10 Motor Driver is

explained with examples and suggestions for use.

Theory of operation:

All PCBMotors are designed to have a mechanical resonance in the 40–50 kHz range

and the drive voltage must have a frequency close to the motor resonance to turn

the motor. Since the resonance frequency changes with temperature and other

external conditions, it is necessary to track the motor resonance by a control

circuit in the driver.

The driver has a programmable step-down voltage supply to control the motor current

while the frequency is set precisely to the resonance peak.

The driver control circuit is designed to measure the current when the motor is

running and adjust the frequency to keep the current at the resonance peak.

If the motor runs continually self-heating will change the resonance towards a

lower frequency (approx 80Hz per °C) and the driver must compensate. When the motor

is stopped the oscillator frequency is stored in EPROM and used as starting point

next time the motor is turned on.

The driver EPROM stores the individual settings for each motor so differences in

resonance between motors will automatically be taken care of by the driver and when

another motor is selected, the driver will change to the appropriate values. See

more on this below in the discussion of the commands.

 2

Communication:

The driver uses a RX/TX UART port running at 19200 Baud which can be connected to a

USB port on a PC with the supplied cable. The cable is a USB FT233R cable supplied

by Sparkfun.

The recommended Windows terminal emulator is called Termite (freeware). Please use

the communication setup below for Termite (the actual COM port is assigned by your

device):

It is possible to write custom communication software e.g. for LabView as long as

all communication use ASCII characters. Special versions of the driver firmware

also support SPI and I2C, but this has not been implemented in the current

firmware.

 3

Example of Available Commands and EEPROM memory:

The commands are listed by the driver in response to the ‘h’ command. The memory

map for the system variables as well as for the individual motors is listed as

well:

** LIT MUX v.9.1 05-09-2017/PCBmotor **

Command example (end with <CR>): s100,d1000,s-100,g4000 (no white spaces!)

Use ';' to separate two commands in the same string: s10,x5;s100

COMMAND: VALUE: DESCRIPTION:

ADC>x?Stop Stop repeats if (last measured mV/mA) > x. Also ADC<x?Stop

ADC>x?J=ADC Set J (or K) = (last measured mV/mA) if > x. Also ADC<x?J=ADC

A1,A2,A3 Analog position sensors and Index for M1

BCR BCR: Break for <CR>

BI/B+ BI: Search for Index, B+: Index break on

B- B-: Break OFF

CW(CCW) 0..255 Motor percentage voltage scaling

D(elay) val Delay (msec)

E(scape) 0..255 Reverse 50 steps back at 1.25 drive voltage

G/GN +/-pos Goto position. GN: No resonance tracking

I(nfo) na Frequency & current

J val/P Variable: j=10,sj-> run 10 steps. J=P sets J equal to current

position

J>x?J=y Set J to y if J > x. Also J<x?J=y

J>x?Stop Stop repeat & set J=0. Also J<x?Stop

K Same as J

L 0..255 Set/query sensor LED drive

LS Optimize LED value

M 1..10 M1 to M10 with external multiplexer, use M1 and M2 for internal

relays (no multiplexer)

O(sc) 0..255 Oscillator setting, autoset with P command

P R/N/A Resonance sweep: P, PR (reverse), PA (alternating)

Q/QS +/- Minimum messages. Q- turns info back on. QS shows string on SPI

R/RD/RL adr Reads EEPROM byte/integer/long from address 'adr' (0..255)

STB +/- Toggle motor on/off. Use - for CCW

S/SN +/-step Steps (max +/-32768). SN: no resonance tracking

SC/SCN +/-step Correct steps for Center Offset(MotorMEM4 & 7). SCN: no resonance

tracking

U/UP/UN +/-val Micropulses. Use - for CCW. P/N to stop at p/n edge

US/UPS/UPN +/-val Same using sweep pulses

V(oltage) 0..5000 Motor voltage, Vs(mV)

Vmin 0..5000 Vmin: Min voltage to turn motor

Vmax 0..5000 Vmax: Max voltage limit

W/WD val@adr Writes byte/integer in address 'adr' (0..255). Note '@'

X(repeat) val Repeat command until ';'

Z/ZI +/-pos Set/query Position or Index offset

H(elp) na This txt

 4

SYSTEM MEMORY: Read 2-byte positions with RD command, i.e. RD4:

1: Current motor

2+3: Max power dissipation (mW)

4+5: Micro pulse length = (value+1)*2.6us

6+7: Micro pulse interval = (value+1)*2.6us. Set to zero for continuos pulses

8: Resonance range low

9: Resonance range high (NOTE:high>low)

10: Count after stop (ms)

12+13: Max steptime in ms, default 250ms. Motor stops with warning

14+15: Tracking stability delay

16+17: Vs, motor voltage 0..5000mV. Use V-command to set/query

18+19: Frequency calibration

20: Current calibration

21: Set to 1 for reverse rotation. Power OFF to read

 Memory position 243-255 are free

MOTOR MEMORY: M1-M10 starting position = 11*(motor#+1)

+ 0+1 Position

+ 2+3 Index offset, use BI to search for index or ZI to set value

+ 4 Codewheel offset max (TBD)

+ 5 Vmin (x100mV)

+ 6 Vmax (x100mV): max VS

+ 7 Codewheel offset angle (TBD)

+ 8 Oscillator set by sweep/tracking or set/query with O-command

+ 9 CW percentage scaling of Vs (0..255) in S and G-command

+ 10 Same for CCW

STOP commands D,S,G & U: press <CR> on PC

NOTE !!! DO NOT EXCEED RATED MOTOR CURRENT!!!

The commands are explained in more detail below.

The driver has 256 Bytes of EEPROM memory which is assigned as follows:

mem0-mem21 for system memory,

mem22-mem32 Motor1 individual parameters

mem33-mem43 Motor2 individual parameters

mem44-mem54 ditto Motor3

mem55-mem65 ditto Motor4

mem66-mem76 ditto Motor5

.

.

.

Mem132-mem255 are free and available to the user with the R/W commands

It is not necessary to calculate the location of the parameters for each motor

since the command will automatically select the right memory position once the

motor is selected.

Note that is possible by mistake to overwrite the memory with serious consequences

for the driver operation so a backup listing is recommended to be able to restore

the contents of the EEPROM.

 5

Command Interpreter:

When the LED is blinking on/off in a 1 second cycle, the driver is waiting for the

next command from the user. This is indicated on the screen with ‘>>’.

When the driver receives a command line terminated by a <CR>, the driver starts

executing the individual commands separated by ‘,’ or ‘;’ until all commands have

been executed:

S720,d1000,s-720 => step 720 – delay 1000ms – step -720

Using a motor with a 1440 step codewheel the result of this line will be half a

turn clockwise, wait a second and turn back.

It is possible to repeat part of the command line up to the next semicolon or end

of the line by using the ‘x’ command

s100,d1000,s-100,x10;h

This command line will repeat the movement 10 times and then list the help text.

If a <CR> is received from the COM port the x-repeat will be stopped.

Commands:

ADC>x?S Stop repeats if (last measured mV/mA) > x. Also ADC<x?S

This will stop command line execution when the last measurement is above/below the

limit given. Here is an example with microstepping (‘u’ command) until a given

value from the position sensor (‘ap’ command) is reached:

>>u3,ap,ADC>2700?S,x100 => 3 microsteps, measure position sensor output, stop if >2700

Output from driver:

Position sensor: 1905 mV Value: 1

Position sensor: 2332 mV Value: 1

Position sensor: 2643 mV Value: 1

Position sensor: 2812 mV Value: 1

>>

ADC>x?J=ADC Set J (or K) = (last measured mV/mA) if > x. Also ADC<x?J=ADC

Transfer the measured value to one of the command line variables, J or K, which in

turn could be stored in EEPROM for later evaluation.

 6

A1,A2,A3 Analog values for Position and Index sensors

Not relevant in this application which uses a digital AEDR8500 sensor. Use the IS-

command to see current logical values for the sensors.

BCR BCR: Break for <CR>

As default most commands can be interrupted from the keyboard by typing a <CR>.

However, if this has been switched off by the ‘b-’ command it can be switched back

on with this command.

BI/B+ BI: Search for Index, B+: Index break on

The motor codewheel has an index mark to set the “home” position within a

revolution. BI will turn the motor on to search for the motor index position and

then stop.

B+ just turns on the index sensor and let the user run the motor until the index is

found. After the motor has stopped at the index, the user must turn off the index

sensor with ‘b-’ and set the normal break on with ‘bcr’. This is automatic with

‘bi’.

B- B-: Break OFF

See above.

CW/CCW 0..255 Motor current scaling (percent)

Due to differences in loading and in the motor CW and CCW (clockwise and counter

clockwise) allows the user to modify the motor current (Is) in the two directions.

Default is 100 for both CW and CCW. By typing ‘cw’ (or ‘ccw’) without a value the

driver will read out the current setting. The value can be 0..255:

>>cw

CW : 100

>>cw150

CW : 150

>>

D(elay) val Delay (msec)

The ‘d’ command will wait 0..999999 ms as set by the value given. Typing <CR> will

abort the delay.

 7

G/GN +/-pos Goto position. GN: No resonance tracking

Go to a specified absolute position within a ±30000 range. The ‘z’ command can set

the zero point. Use the ‘s’ command for steps relative to the current position:

>>z,g200,s50,g-200

Position set to 0 for motor 1

Start position 0 for Motor 1 => Go absolute to position 200
End position 200 for Motor 1

Motor current (mA): 452

Steps= 200

Steptime(us)= 3840

Start position 200 for Motor 1 => Move 50 steps relative to current position
End position 250 for Motor 1

Motor current (mA): 460

Steps= 50

Steptime(us)= 3904

Start position 250 for Motor 1 => Go absolute to position -200
End position -200 for Motor 1

Motor current (mA): 474

Steps= 450

Steptime(us)= 3840

The qualifier N as in ‘GN’ or ‘SN’ switches off the tracking software and keeps the

oscillator frequency fixed. This can be useful for making various specialized tests

e.g. the motor performance in the Power Consumption chart in the beginning of this

text. Here the oscillator value (‘o’ command) is controlled thru the J-variable

which is increased in steps of 1 for each repeat of the line from the semicolon to

the end:

j=60;oj,sn200,i,j+1,x30

Oscillator: 60

Start position 30806 for Motor 1

End position 31006 for Motor 1

Motor current (mA): 105

Steps= 200

Steptime(us)= 14272

Osc,Hz,mA: 60,48488, 0

J: 61

29 repeats left

Oscillator: 61

Start position 31006 for Motor 1

End position 31206 for Motor 1

Motor current (mA): 107

Steps= 200

Steptime(us)= 13632

Osc,Hz,mA: 61,48392, 0

J: 62

.

.

.

Normally all the info from the command execution is not necessary and the ‘q’

command can be used to minimize reporting and speed up execution

 8

I(nfo) Frequency & current

Reports oscillator setting, frequency and motor current. If the motor is not

running the current is zero so it is necessary to turn the motor on first to get a

valid reading of the current:

>>stb,d3000,i,stb- => Turn on the motor, wait 3 s, info readout, stop

Motor 1 ON

Waiting 3000 milliseconds

Osc,Hz,mA: 68,47672,142

>>

J val/P Variable: j=10,sj-> run 10 steps. J=P sets J equal to current position

J>x?J=y Set J to y if J > x. Also J<x?J=y

J>x?S Stop repeat & set J=0. Also J<x?S

K Same as J

J and K are numerical variables with a value that gets inserted everywhere J/K

occurs in the command line. If the value changes the new value will be used – see

the example under the ‘g’ command.

L 0..255 Set/query sensor LED drive

LS Optimize LED value

The driver has two comparators to convert analog position and index sensors to

hi/lo values. Only with analog sensors (200 cpr).

 9

M 1..10 Motor selection.

Selects the motor and stores the value in mem0 i.e. ‘r1’ will give the current

motor number.

m1,s10,m0,d2000,x3

Start position 32608 for Motor 1

End position 32618 for Motor 1

Motor current (mA): 99

Steps= 10

Steptime(us)= 8768

Waiting 2000 milliseconds

2 repeats left

Start position 32618 for Motor 1

End position 32628 for Motor 1

Motor current (mA): 165

Steps= 10

Steptime(us)= 6848

Waiting 2000 milliseconds

1 repeats left

Start position 32628 for Motor 1

End position 32638 for Motor 1

Motor current (mA): 169

Steps= 10

Steptime(us)= 6656

Waiting 2000 milliseconds

O(sc)0..255 Oscillator setting, autoset with P command

Individual setting of the frequency for each motor. Once the motor is running the

start frequency is determined by the O-value but the driver will continuously

adjust the frequency to maximize current for the motor. When the motor is turned

off the new O-value is stored in EEPROM.

 10

P R/N/A Resonance sweep: P, PR (reverse), PA (alternating)

Resonance sweep of the oscillator, starting by the value in mem8 ending with the

mem9 value:

>>p

Calibration sweep with motor 1

Osc, mA:

140, 70 ******************

141, 63 ****************

142, 63 ****************

143, 59 ***************

144, 59 ***************

145, 56 ***************

146, 56 ***************

147, 59 ***************

148, 59 ***************

149, 63 ****************

150, 73 *******************

151, 84 **********************

152, 94 ************************

153,112 *****************************

154,133 **********************************

155,154 ***************************************

156,178 ***

157,199 **

158,224 ***

159,255 **

160,280 ***

161,294 **

162,297 ***

163,287 **

164,273 ***

165,248 ***

166,224 ***

167,196 **

168,171 ***

169,147 *************************************

170,133 **********************************

171,119 ******************************

172,105 ***************************

173, 94 ************************

174, 87 **********************

175, 77 ********************

176, 70 ******************

177, 59 ***************

178, 52 **************

179, 45 ************

180, 42 ***********

Motor resonance: 45608 Hz, o: 162, max current: 297, voltage: 1500

Q +/- Minimum messages. Q- turns info back on

As default the driver reports a lot of statistics on the motor, but this can slow

down execution due to the limited communication speed. The ‘q’-command turns of

most of text.

R/RD/RL adr Reads EEPROM byte/integer/long from address 'adr' (0..255)

Used for reading EEPROM values. The memory map tells which parameters are using two

Bytes.

 11

STB +/- Toggle motor on/off. Use - for CCW

Debug start/stop of the motor without sensor and tracking.

S/SN +/-step Steps (max +/-32768). SN: no resonance tracking

Se the explanation for the ‘G’-command.

U/UP/UN +/-val Micropulses. Use - for CCW. P/N to stop at p/n edge

Pulsed mode with ON period set by mem4+5 followed by an OFF period (mem6+7)

repeated as many times as given by the value of val. Typically a pulse frequency of

1kHz can be achieved which means this operating mode will generate audible noise.

The oscillator frequency is kept constant in this mode i.e. no tracking.

US/UPS/UPN +/-val Same using sweep pulses

Pulsed mode but with the driver frequency being swept while the motor is on.

Contact factory before this mode is used.

V 0..5000 Motor voltage, Vs(mV)

Vmin,Vmax 0..5000 Vmin: Min voltage to turn motor, Vmax: Max voltage limit

Set the DC voltage for the output stage. Vmax is used to accidentally overloading

the motor with too high a current - approx 500mA for an Ø30 motor.

W/WD val@adr Writes byte/integer in address 'adr' (0..255). Note '@'

Write a value to a specified EEPROM byte/integer.

wd40@4

Writing 40 to address 4(+1)

X val Repeat the command line 'val' times.

Specifies the number of repeats of a command line from a semicolon to the next

semicolon

Z/ZI +/-pos Set/query Position or Index offset

Set or query the zero position and the offset for the index sensor.

H(elp)

The built-in driver help text

- O –

